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The spin-up from rest of a contained homogeneous free-surface fluid has been 
examined in the laboratory for a variety of non-axisymmetric containers. It was 
found that in the spin-up process three stages can be distinguished before the fluid 
reaches the ultimate state of rigid-body rotation. When the container starts 
spinning, the non-axisymmetric lateral tank boundaries induce horizontal pressure 
gradients, and as a result relative flows arise instantaneously after the start of the 
experiment. The absolute vorticity of the starting flow is zero, and a description can 
be given in terms of potential theory. Theoretical solutions have been derived for a 
number of geometries, and comparison with experimentally observed streamline 
patterns shows good agreement. In the next stage, flow separation sets in, in most 
cases leading to locally intense three-dimensional turbulent flows. The basic rotation 
causes a transition from three-dimensional to two-dimensional motion, and a 
subsequent organization of the relative flow into a number of cells is observed. 
During the final stage, the flow in these cells gradually decays owing to the spin- 
up/spin-down mechanism provided by the Ekman layer a t  the bottom of each cell, 
until eventually the fluid is in solid-body rotation. 

1. Introduction 
The spin-up of a fluid in a rotating container is a fundamental problem in fluid 

mechanics, and has been studied under different conditions by a number of 
investigators. Apart from their practical engineering applications in for example 
turbomachinery, spin-up flows are relevant to geophysical and astrophysical fluid 
dynamics. A comprehensive review of theoretical and experimental work on spin-up 
flows is written by Benton & Clark (1974). 

Most previous studies - if not all - considered the spin-up of a homogeneous or 
stratified fluid in axisymmetric containers, and attention was in particular focused 
on cylindrical and spherical geometries. A careful analysis of the flow arising in a 
closed rotating cylinder when its rotation speed SZ was instantaneously increased 
with a small amount ASZ, was given by Greenspan & Howard (1963). As a reaction 
to the increased rotation speed Ekman layers develop a t  the horizontal boundaries 
(being the bottom and the lid) in which the flow is directed radially outwards. This 
radial outflow is compensated by weak axial flows directed towards the Ekman 
layers, commonly referred to as the Ekman suction flow. The radial Ekman flows are 
deflected by the sidewall of the container, at which a Stewartson shear layer occurs. 
Besides carrying axial transports, this Stewartson layer provides a weak radial flow 
to the interior domain (i.e. the region outside the viscous layers), which balances the 
axial flow towards the Ekman boundary layers. This (secondary) circulation in the 
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meridional plane driven by the Ekman layers brings interior fluid from larger radii 
to smaller radii, and thus provides an efficient spin-up mechanism: in order to 
conserve its angular momentum, the fluid in a ring of decreasing radius acquires a 
larger azimuthal velocity. Greenspan & Howard ( 1963) have analysed this time- 
dependent flow problem and they found that the t ime for the fluid to spin up, i.e. to 
reach the new state of rigid-body rotation with angular velocity Q+AQ, is 
approximately given by H/(vO)f,  with H the cylinder height, v the kinematic fluid 
viscosity, and 52 the initial rotation speed of the cylinder. This spin-up time is usually 
short compared with the ‘viscous’ timescale H 2 / v ,  which is - in most practical 
situations - larger by one or two orders of magnitude. The analysis was carried out 
for the linear case, in which the speed increase was small enough (AQ/Q 4 1 )  so that 
the nonlinear advection terms in the equation of motion could be neglected. Later 
analyses revealed, however, that the timescale for the linear spin-up also applies to 
the nonlinear case, in which AQ is no longer small compared with 0. Surprisingly, 
this timescale was also found to apply to the spin-up from rest. Although these 
results concern spin-up flows in an axisymmetric eontaincr with a rigid lid, the 
symmetry about the half-plane allows a direct translation to the case of a free-surface 
fluid in a cylinder, assuming that surface elevations have negligible effect on the flow 
dynamics. 

In  the case where the fluid is stratified, the spin-up becomes more complicated 
because the density gradients will affect the secondary circulation driven by the 
Ekman layers at the horizontal boundaries. The linear spin-up of a linearly stratified 
fluid in a closed cylinder has been studied by Walin (1969), who found that, 
although the flow arising after the speed increase of the cylinder is essentially 
different from that in the homogeneous case, the spin-up timescale to reach a ‘final’ 
state is the same as for a homogeneous fluid. This ‘final ’ state is one of spatially non- 
uniform rotation, and the ultimate state of uniform rotation is only achieved on the 
diffusive timescales associated with density and momentum diffusion. Buzyna & 
Veronis (197 1) have conducted laboratory experiments on spin-up of a continuously 
stratified fluid, and Walin’s theoretical results were found to be in reasonable 
accordance with their observations. The spin-up of a two-layer fluid has been 
examined theoretically and experimentally by Holton (1965) and Pedlosky (1967), 
by considering two layers of comparable depth, with the interface not touching or 
intersecting the bottom of the container. It was found by Linden & van Heijst (1984) 
that, for the case of a shallow lower layer, intersection of the interface with the 
bottom results in the formation of a density front, which further complicates the 
spin-up of both layers. An important factor in these stratified spin-up problems is 
the occurrence of baroclinic instabilities, which give rise to wave-like, non-axisym- 
metric motions. Such motions decay extremely slowly, so that the timescale for the 
fluid to adjust to the increased rotation speed of the container is much larger than 
for baroclinically stable flows. 

As stated before, most previous spin-up studies were concerned with flows in 
axisymmetric containers. The present study addresses the problem of the nonlinear 
spin-up from rest of a homogeneous free-surface fluid in a variety of non- 
axisymmetric containers. The geometries considered here are : (i) an annular region 
between two coaxial cylinders with a radial barrier between the cylinder walls; ( i i )  
a semicircle region; (iii) a circular region with a radial barrier extending from the 
centre to the tank wall; and (iv) a region enclosed by two non-concentric cylinders 
connected by a radial barrier. The non-axisymmetry of the flow geometry gives rise 
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to complicated time-dependent flow structures, and it was found that in the spin-up 
process three main stages can be distinguished. Laboratory experiments revealed 
that the flow arising instantaneously after the tank starts rotating still has zero 
absolute vorticity, and its structure can thus be calculated by potential theory. 
Owing to the geometry, this starting flow is essentially non-axisymmetric. In the 
next stage of the spin-up process, flow separation occurs, leading to irregular flow 
patterns. In the next stage, organization of the relative flow into regular cell patterns 
is observed, an effect caused by the two-dimensional nature of the motion in this 
particular stage. These patterns are persistent, while the flow in each cell slowly 
decays by the well-known spin-up/spin-down mechanism associated with the Ekman 
layer present at  the bottom of each cell, in analogy with the spin-up of a 
homogeneous fluid in an axisymmetric rotating cylinder. 

The flows in the various geometries have been studied both experimentally and 
theoretically. Section 2 focuses on the annular geometry with a radial barrier, 
whereas the other geometries (ii), (iii) and (iv) are considered in $3. Finally, some 
general conclusions are formulated in $4. 

2. Fluid in an annulus with a radial barrier 
Consider the following configuration of a Newtonian fluid confined in an annular 

region between two coaxial cylinders, with a radial barrier extending from the inner 
cylinder to the outer cylinder, thus making the region ‘singly connected’. The fluid 
has a free surface, and its depth is denoted by H .  The diameters of the outer and the 
inner cylinder walls are given by Do and D,, respectively. This system of cylinders and 
radial wall is mounted on a turntable in such a way that the rotation axis coincides 
with the cylinder axis. The rotation speed 52 of the turntable can be varied 
continuously from 0 to approximately 2 rad s-l; the speed is controlled by an 
electronic feedback circuit and kept at  a constant value within 0.5 % accuracy. 
Initially, 52 = 0 and the fluid is completely at  rest. At  t = 0 the table starts rotating, 
its angular speed gradually being brought to some value SZ > 0. The acceleration of 
the table itself typically takes 3-5 s, depending on the ultimate 0-value. The starting 
flow as well as the fluid flow in later stages of the spin-up process is visualized by 
small tracer particles floating on the free surface; their motion is recorded by a 
corotating photocamera mounted at  some distance above the fluid. For the purpose 
of contrast enhancement, the fluid (ordinary tap water) was dyed with potassium 
permanganate or with methylen blue. Streamlines were visualized by making time 
exposures, and in a number of experiments velocity distributions were determined by 
measuring streak lengths. 

2.1. Description of the Spin-up $ow 
Immediately after starting the turntable, the fluid is pushed forward by the radial 
barrier : the pressure on the ‘push-side’ of the barrier rises, while it drops at  its rear, 
thus creating an azimuthal pressure gradient which drives a considerable prograde 
flow (i.e. in the same sense as the table rotation) along the inner cylinder wall, 
directed from the higher to the lower pressure region. At  the same time a retrograde 
return flow occurs along the outer wall, as schematically depicted in figure l ( a ) .  
Streamlines take on the appearance of a single closed cell, which fills the entire 
annular region. When the table is started too abruptly, gravity waves may be 
generated that lead to oscillatory fluid motions. Such oscillations were avoided by 
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FIGURE 1. Schematic drawing of (a) the instantaneously arising starting flow, and ( b )  the 
subsequent flow separation (indicated by an arrow) in the annular flow geometry with a radial 
barrier. 

spinning up the turntable more gently, and a streamline pattern was observed as 
shown in figure 2 (a). Conservation of vorticity implies that this impulsively started 
flow is characterized by zero absolute vorticity. 

Within typically 1 rotation period the pressure difference across the radial barrier 
vanishes (when the table is no longer accelerated), thus reducing the azimuthal 
pressure gradient to zero. As a consequence, the prograde flow is no longer able to 
follow the curved inner channel wall, and flow separation occurs, as depicted in 
figure 1 ( b ) .  This phenomenon is clearly seen in figure 2 ( b ) ,  where the prograde jet-like 
flow separates from the inner cylinder wall, giving rise to a second, smaller cell with 
cyclonic circulation. The separation point moves gradually upstream (i.e. in a 
clockwise direction), and the separated jet-like flow thus induces an irregular, 
turbulent motion in the entire annular region. In  this stage of the spin-up, both large- 
scale and vigorous small-scale eddy motions are observed in the fluid, giving the flow 
a rather chaotic turbulent appearance (see figure 2 c ) .  

After some more rotation periods the flow is seen to become organized into a more 
or less regular array of closed cells, as is clearly shown by figure 2 (d ) .  These cells, with 
alternately cyclonic and anticyclonic circulation, appear to be rather stable, and 
the associated relative flow decays slowly by frictional effects (mostly confined to the 
bottom Ekman layer), until an ultimate state of rigid-body rotation is reached. 

The organization of the flow into a regular cell pattern is a result of the two- 
dimensionality of the flow, which causes energy transfer from smaller scales to larger 
scales (see Batchelor 1969). This phenomenon is commonly known as the ‘inverse 
energy cascade ’ in two-dimensional turbulence. In  order to understand this 
phenomenon, careful observations were carried out during the spin-up process, using 
floating tracer particles to visualize the surface motion, and neutrally buoyant 
particles for visualization of the fluid motion a t  lower levels. The observations 
revealed that, immediately after separation occurred a t  the inner sidewall, the 
turbulent flow was essentially three-dimensional within the entire domain. Within 
typically 2 4  rotation periods, however, the flow was seen to become nearly two- 
dimensional, the (horizontal) motion a t  lower levels being approximately identical to 
the motion a t  the free surface. This effect is caused by the system rotation, as 
expressed by the well-known Taylor-Proudman theorem. At this stage it was 
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FIQURE 2. A sequence of photographs showing streaklines in four stages of the spin-up process in 
the annular geometry. Initially, the starting flow has the appearance of a single cell (a), and when 
flow separation occurs ( b ) ,  the motion becomes irregular (c), until eventually the flow is observed 
to become organized into a regular array of cells (d).  Experimental parameters are: H = 18.5 cm, 
52 = 0.755 rad/s, Do = 92.5 em, Di = 30.0 cm. The photographs were taken at  (a) t = 0.4T, ( b )  l.OT, 
(c) 3.OT and (d )  10.8T, with T = 8.3 s the rotation period. The exposure time of the photographs 
(a-c) was 1 s, whereas the exposure time of ( d )  measured 2 s. 

observed that smaller eddies grow and merge with others, thus demonstrating the 
existence of the inverse cascade of kinetic energy. The width of the channel puts a 
physical limit on the ultimate eddy size, so that eventually the cells are arranged in 
a regular array filling the channel over its full length. 

2 .2 .  Analysis 
2.2.1. The flow in the initial stage 

As the fluid is initially a t  rest, the flow arising immediately after starting the 
turntable will still have zero absolute vorticity. The vorticity of the relative flow (as 
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observed by the corotating photocamera) is therefore - 252, with 52 the table rotation 
speed at  that particular instant. Assuming that the motion in this stage is two- 
dimensional, i.e. surface elevations and depressions are small compared with the fluid 
depth H ,  the relative flow can be represented by a two-dimensional stream function 
Y, which thus has to satisfy V2Y = 252. The stream function Y is here defined by 
v = - I  x VY, with k the unit vector in the axial (i.e. vertical) direction, and v the 
(horizontal) velocity vector. Although viscous layers develop at the solid boundaries, 
their presence can be neglected in this initial stage, so that to a good approximation 
Y = 0 at the lateral flow boundaries. 

In view of the geometry of the flow region a cylindrical coordinate system ( r ,  0) 
is introduced, with r the radius measured from the geometric centre and 0 the 
azimuthal angle. One side of the radial barrier corresponds with 0 = 0, its rear side 
with 0 = 2n. When lengths are scaled by the tank radius, the outer and inner channel 
walls are given by r = 1 and r = a, respectively. The flow problem can then be 
formulated as 

with 
V 2 Y ( r , 0 )  = 252, 

a < r < l ;  e = 0 , 2 ~ :  Y = O ,  
r = a , 1 ;  0 < e < 2 ~ :  Y = O .  

A particular solution of (1) is 
Up(., 0) = 52r2sin2 19, (3) 

so that the resulting homogeneous problem becomes 

with 
V 2 Y ( r ,  0) = 0, (4) 

( 5 )  
a < r < l ;  0=0 ,2n :  Y=O, 
r = a ;  
r =  1; 0 < 0 < 2x3 Y = -Qsin20. 

0 < 0 < 2x: Y = -52a2sin20, 

It is convenient to transform this problem to the half-circle geometry by 

in which a: < s < 1 and 0 < a < n. The general solution of V 2 Y ( s ,  a )  = 0 is 
r = s2, 0 =  201, (6) 

(7) 

with n an integer ; A ,  B,  C and D are coefficients to be determined from the boundary 
conditions (5 ) ,  which have to be transformed to the (s, a)-coordinates according to 
(6). Application of these conditions at  r = a and r = 1 requires a series representation 
of sin2 2a, which can be obtained by standard Fourier series theory. For sin2 ka,  with 
k a positive integer, this yields 

Y(s, a )  = (A cosna+Bsinna)(C/sn+Dsn)+A,lns+B,, 

sin nu 
(nodd, 0 < a < x). 8k2 * 

sin2ka = -- C 
x n--l (n--k)n(n+2k) 

One thus finds the solution Y(s,a) on the half-circle geometry, and by the inverse 
transformation (9 ,  a )  --f (r,  0) the solution for the stream function Y ( r ,  0) in the original 
geometry is found to be 

sin 
I-’ (n - 4)n(n + 4) 

[,-n/z - (nodd). (9) 
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FIGURE 3. Comparison of the theoretical streamline pattern according to (9) for Y = 0, -0.025, . .. , 
-0.10 and the experimentally observed starting flow (as shown in figure Za) in the annular 
geometry. 

A number of streamlines Y = constant were plotted and projected on the single-cell 
flow as observed by the photocamera (see figure 2a) in the initial phase of the spin- 
up process. The result is presented in figure 3, and it is clear that  the theory fits the 
observation very well. 

The azimuthal velocity v,(r,B) in the flow field can be deduced from (9) by 
differentiating Y according to  vo = -a Y p ,  yielding 

sin $0 
(n - 4)(n + 4) 

(nodd). (10) 

In a number of experiments the azimuthal velocity at B = n: was measured from the 
streak lengths at different radii. A typical example of the radial distribution of 
v,(B = n) is shown in figure 4, in which the dots represent experimental data, and the 
solid curve represents the theoretical velocity profile v,(r, n) according to (10). It 
must be noted that the streak lengths were measured while the table was still 
spinning up from 0 to its ultimate rotation speed Q, and unfortunately the exact 
value of the rotation speed a t  the moment the photograph was taken is not known. 
For this reason the amplitude of the theoretical v,-profile was decreased, until it  
matched the amplitude of the measured profile. Nonetheless, the radial structures of 
both profiles agree very well. 
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FIGURE 4. Radial distribution of the azimuthal velocity at 0 = x  in the annular geometry 
immediately after starting the turntable. The dots represent the experimental data obtained from 
the observed streak lengths, whereas the solid line represents the theoretical solution for vo(B = x )  
according to (10). The radial coordinate and the velocity magnitude are scaled by R and QR, 
respectively, with R the tank radius and G! the ultimate rotation speed of the turntable. The arrow 
indicates the position of the inner wall. Experimental parameters: H = 18.4 cm, C2 = 0.84 rad/s, 
Do = 92.5 cm, Di = 30.0 cm. 

2.2.2. The number of cells 
The beginning of this section contained a description of how flow separation a t  the 

inner channel wall sets in, and the eventual organization of the resulting irregular 
flow into a regular pattern of cells (see figure 2 4 .  It was argued that the channel 
width puts a limit on the cell size and, assuming that the cells tend to be roughly 
circular, this implies that their number increases with a decreasing channel width. 
Under the assumption of circular cells, their 'approximate number N will thus be 
given by 

with Do and Di the diameters of the outer and the inner channel walls, respectively. 
In  order to verify this conjecture a number of experiments were carried out in 

which the inner diameter Di was varied from 12.0cm to 51.0cm (in all the 
experiments the outer diameter Do was kept a t  92.5 cm). It was indeed found that the 
number of cells is larger in a narrower channel, as illustrated by figure 5. This 
photograph shows the ultimate streamline pattern in a channel with W = $(Do-Di) = 
21.0 em, in which 11 cells can be distinguished, in contrast to N = 6 in the case W = 
31.3cm (figure 2 4 .  The observed values of N are presented graphically as a 
function of Di in figure 6. The step-like solid line represents the conjectural 
relationship (11) between N a n d  D,, and the agreement with the experimental data 
(denoted by black dots) appears to be good. In  a number of experiments the number 
of cells jumped between two neighbouring integer values, and for these cases the 
corresponding dots are connected by a solid vertical line. Although both the ultimate 
rotation speed 52 and the water depth H were varied in the experiments (in the ranges 
0.44-1.14rad s-l and 7.2-24.1 em, respectively), the number N did not appear to be 
dependent on these parameters. Nonetheless, 52 and H do play an important role in 
the spin-up process, viz. in the decay of the cell vortices. 
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FIGURE 5. Streakline photograph showing 11 cells in the final stage of the spin-up in the 
annular geometry, with a narrower channel than the one in figure 2. Experimental parameters : 
H = 15.2 cm, 8 = 1.00 rad/s, Do = 92.5 cm, Di = 50.0 cm. 

, I  I I I ,  I I , ,  

5 10 15 20 25 30 35 40 45 50 
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FIGURE 6. Graph showing the relationship between the number N of cells and the channel width 
+(Do-D,) .  The dots represent data obtained in laboratory experiments in which Di varied from 
12.0 em to 51.0 cm, while Do was kept a t  92.5 em. The step-like solid curve represents the conjectural 
relationship (1 1) between N and Di. 
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FIQIJRE 7 .  Comparison of the spin-up timescale T, according to (13) and a number of experimentally 
observed spin-up times for the annular geometry (indicated by dots) and for the semicircle 
geometry shown in figure 9(a) (data indicated by plus signs). The solid curve represents a fit with 
a straight line of slope 1 .  

2.2.3. The spin-up time 

Once the flow has become organized into a regular array of roughly circular 
vortices, its structure does not show any drastic changes. On the contrary, the 
relative fluid motion is seen to decay very slowly, until the ultimate state of solid- 
body rotation, i.e. zero relative flow, is reached. It seems reasonable to assume that 
in this final stage of the spin-up process frictional effects are mainly confined within 
an Ekman layer a t  the bottom of each cell. This Ekman boundary layer plays a 
crucial part in the spin-up or spin-down of the cells, much more than the frictional 
shear layers a t  the lateral boundaries. The linear and nonlinear spin-up of fluid in a 
circular cylinder has been investigated extensively (see c.g. Greenspan & Howard 
1963). It was found that the characteristic timescale for this spin-up in a closed 
container of height H is 

where E is the Ekman number defined as v / ( Q H 2 ) ,  with v the kinematic fluid 
viscosity. This spin-up mechanism is also responsible for the flow decay in the cell 
pattern, but because of the free surface - which is assumed to be free of any shear 
stresses - the appropriate spin-up timescale for this case is 

T,* = (QEt)-l ,  (12 )  

T, = 2 H / ( v O ) i ,  (13) 

with H the depth of the fluid column. Figure 7 shows a comparison of experimentally 
observed spin-up times (measured from the start of each experiment) and this 
Ekman timescale T,. The black dots represent data obtained for the annular 
geometry with a radial wall, while the plus signs refer to a different flow geometry, 
to be discussed in the next section. I n  most cxperiments only the water depth H was 
changed (from 1.5 cm to 20.0 cm) while the other parameters were kept constant, but 
in a few additional runs both the rotation speed fz and the water deptJh H were 
varied. All the dots seem to collapse on a straight line of slope 1 ,  indicating that the 
decay time of the flow in the present geometry is indeed given by (13). 
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FIGURE 8. Graph of observed spin-up (dots) and spin-down (plus signs) times for fluid in the annular 
geometry as a function of the depth H .  The other experimental parameters were kept constant, viz. 
Q = 0.755 rad/s, D, = 30.0 cm and Do = 92.5 cm. 

(4 (b) (4 
FIGURE 9. Flow geometries considered in $3:  ( a )  the semicircle, ( b )  the circular region with a 

radial barrier, and ( e )  the  region enclosed by two non-concentric cylinders and a radial barrier. 

Thus far, attention has been focused on the spin-up of the fluid from rest, but an 
equally intriguing question concerns the spin-down of the fluid in this geometry from 
solid-body rotation at  speed SZ to rest. In  order to investigate the spin-down flow, 
some 15 experiments were carried out in which - after the fluid was brought to solid- 
body rotation - the table rotation speed SZ was gradually reduced to zero. Initially 
one observes the same flow behaviour as shown in figure 2(a ) ,  only with the flow 
directions reversed: there is a strong retrograde flow along the inner channel wall, 
compensated by a prograde backflow along the outer wall. As in the spin-up casc 
(figure 2 b ) ,  flow separation sets in very quickly. The separating wall current again 
induces a three-dimensionally turbulent flow in the entire fluid region, but ~ in 
contrast to the spin-up case -the flow shows no tendency whatsoever to become two- 
dimensional : it keeps its three-dimensional charactcr until it has acquired thc, 
ultimate state of rest. For this reason no organization into cells is observed, and the 
flow remains irregular while decaying. 

A comparison between spin-up times and spin-down times for this particular 
geometry is presented in figure 8. In  these experiments the water depth was changed 
systematically from 1.5 cm to  20.0 cm, with the other parameters held at  a constant 
value. As can be expected from (13) the spin-up time increases proportionally with 
the depth H, but the spin-down time seems to take a constant value, independent of 
H, only showing a slight increase a t  larger H-values. 
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FIGURE 10 (ax). For caption see facing page. 
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FIGURE 10. Sequence of streakline photographs showing the evolution of the relative flow durihg 
the spin-up in the semicircle geometry, taken at (a) t = 0.4T, (b) l.OT, (c )  1.8T, (d) 2.4T, ( e )  5.4T, 
and (f) 14.4T, with T = 8.3 s the rotation period. The exposure time of (a-e) was 1 s, whereas the 
exposure time of (f) measured 3 s. Experimental parameters: H = 12.5 em, SZ = 0.756 rad/s. 
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3. Other geometries 
The spin-up of a free-surface fluid has also been studied in a number of other non- 

axisymmetric geometries, which are depicted schematically in figure 9 : the semicircle 
(a), the circular region with a single radial barrier ( b ) ,  and the region enclosed by two 
non-concentric cylinders connected by a radial barrier ( c ) .  Configuration ( b )  can in 
fact be considered as a limiting case of the geometry considered in the previous 
section, viz. with the inner cylinder radius approaching zero (a+O). In all these 
cases the centre ( r  = 0) of the container coincides with the rotation axis. 

3.1. The semicircle geometry 

Immediately after starting the turntable, the pressure a t  0 = 0 rises, whereas it drops 
a t  0 = n. As a result, an intense flow develops instantaneously along the flat 
boundary, directed from ( r  = 1, 0 = 0) to  ( r  = 1 ,  6 = n). An additional backflow 
arises along the curved boundary, so that the streamlines have the appearance of 
closed cells with anticyclonic circulation. Particle paths photographed in this initial 
stage of the spin-up clearly illustrate the shape of the streamlines (see figure 10a). 
Within one revolution of the turntable the pressure gradient along the flat boundary 
is considerably reduced (because the table is no longer accelerated) and, in addition, 
shear layers develop a t  the lateral boundaries in which locally cyclonic vorticity is 
generated. Both efTects cause the main flow to separate from the walls, leading to the 
formation of two smaller cells with cyclonic circulation in the corners of the flow 
domain (see figure lob). The subsequent photographs of the streamline patterns 
reveal that the sizes of the cyclonic corner vortices increase (figure lOc), and 
eventually the central anticyclonic cell is pinched (figure 10d) in such a way that it 
finally vanishes completely, leading to the merging of the two corner vortices. This 
stage is illustrated by figure lO(e), showing a single, cyclonic vortex in the centre of 
the flow region. As time progresses, a second cell with anticyclonic circulation 
develops in the corner region ( r  = 1,  0 = n), and its size increases gradually until - 
in the final state - the cyclonic and anticyclonic cells are of approximately equal size, 
filling the flow region completely. This combination of two cells appears to be rather 
stable, and the flow structure does not change very much during the decay until the 
ultimate state of solid-body rotation is reached. 

As in the geometry discussed in the previous section, the flow in the initial stage 
of the spin-up process, i.e. immediately after starting the turntable, is described by 
V 2 Y ( r ,  0) = 2Q, with Y = 0 a t  the domain boundaries. Again, by adopting the 
particular solution Y b ( r ,  0) = Qr2 sin20, the problem becomes homogeneous ; the 
Laplace equation V 2 Y ( r ,  0) = 0 has to be solved subject to the boundary conditions 

Y(0 = 0,n) = 0, Y ( r  = 1) = -Qsin2B. (14) 
The general solution of this problem is - after replacing (s, a )  by ( r ,  0) - given by (7), 
and the coefficients are determined by applying the boundary conditions (14). The 
condition a t  r = 1 requires a Fourier sine series representation, which can be 
obtained by using (8) with k = 1. One thus finds the following complete solution: 

A comparison between a number of streamlines Y = constant and the observed 
starting flow is presented in figure 11. It is clear that, apart from a slight shift, the 
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FIGURE 11. A comparison of the theoretical streamline pattern calculated according t o  (15) and the 
experimentally observed starting flow in the semicircle geometry. The streamlines are plotted for 
Y = 0, -0.04, ._. , -0.16. Experimental parameters as in figure 10. 
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FIGURE 12. Radial distribution of the azimuthal velocity at 0 = in in the semicircle geometry 
immediately after starting the turntable. Experimental data  are indicated by dots, whereas the 
solid line represents the theoretical solution vo(r, in) according to  (16). Scaling as in figure 4. 
Experimental parameters : H = 20.0 em, 52 = 0.755 rad/s. 

theory fits the observation very well. A more quantitative comparison was made by 
measuring the radial distribution of the azimuthal velocity component vH(r,  8) at 
8 = &c and comparing this with the theoretical profile. The azimuthal velocity is 
found from (15) by using vH = -a!P/ar, which yields 

8 0  rZnsin(2n+1)8 
7c n-o (2n-l)(2n+3) 

vH(r ,8 )  = -2Qrsin28-- C (0 d 8 < 7c). 

Figure 12 shows the radial distribution of this theoretical solution vH a t  6 = ir 
(denoted by the solid line) as well as the experimentally determined velocity profile 
a t  8 = (denoted by black dots). As in figure 4, the amplitude of the theoretical 
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velocity profile was matched to that of the observed profile, because the velocity 
measurements were done while the table was still spinning up to its ultimate rotation 
speed, so that the exact value of SZ a t  the time of the photograph was not known. The 
agreement between theory and observation is quite good, although a t  larger radii the 
profiles are somewhat shifted. It could well be that this shift is caused by the non- 
uniform fluid depth in this initial stage : local changes in fluid depth cause additional 
advective flows as well as locally increased or decreased vorticity. 

In 15 experimental runs the time was measured for the fluid to reach the ultimate 
state of solid-body rotation, and a comparison with the appropriate Ekman spin-up 
timescale T,  as defined by (13) is given in figure 7 (the data are indicated by plus 
signs). In these experiments only the water depth H was varied, from 1.5cm to 
24.1 cm, while the rotation speed was SZ = 0.755 rad s-l in all cases except one, in 
which i t  was 1.25 rad s-l. The agreement with the Ekman timescale is good, which 
indicates that the decay of the two-cell flow in the 'final' state (shown in figure l O f )  
is caused by the spin-up/spin-down mechanism associated with the Ekman layers a t  
the bottom of each cell. 

3.2. The circular region with a radial barrier 

As mentioned before, the circular geometry with a radial barrier shown in figure 9 ( b )  
can be considered as a limiting case of the flow configuration discussed in $2, with the 
radius of the inner cylinder approaching zero, i.e. a+O. When the turntable starts 
rotating, the fluid is observed to flow instantaneously from the 'push'-side of the 
barrier to its rear, while a compensating flow in an anticyclonic direction occurs along 
the cylinder wall. This starting flow is visualized in figure 13 (a). Although this flow 
pattern resembles the motion observed in the annular geometry (figure 2a),  flow 
separation was seen to occur almost instantaneously a t  the tip ( r  = 0) of the barrier. 
This is due to  the (infinitely) small curvature of the barrier t ip:  owing to its inertia 
the fluid is not able to flow around the sharp 360" corner (this would require infinitely 
large accelerations), and a separation cell with cyclonic circulation is seen to arise 
near the rear side of the barrier tip. The size of this cell increases extremely quickly 
(figure 13b),  and after roughly one revolution of the table three cells can be 
distinguished in the relative flow pattern (see figure 13c) : one cell with cyclonic flow 
originating from the separation a t  the barrier tip, and two cells with slightly weaker 
anticyclonic flow. The final stage is reached after typically 5 rotation periods, and 
shows the occurrence of essentially four cells with alternately cyclonic and 
anticyclonic flow (see figure 13d).  I n  comparison with the previous stage, the cell 
with cyclonic motion originating from the flow separation at the barrier tip has 
shifted in an anticyclonic direction, and sits in the upper left of the picture. In  
addition to the four main cells, some smaller cells are visible in the corners of the flow 
domain, on either side of the barrier. Apart from some minor changes in this relative 
flow pattern (shifting and deformation of the cells), the occurrence of four cells is 
persistent, and the relative motion in the cells slowly decays by the well-known spin- 
down/spin-up mechanism provided by the Ekman layers a t  the bottom of each cell. 

Although separation sets in immediately after starting the turntable (figure 13a), 
it  is tempting to compare the starting flow with the theoretical solution (9) in the 
limit a+O. For this limiting case a number of streamlines Y = constant are plotted 
in figure 14, and it is clear that - apart from the region near the edge of the barrier - 
this pattern very much resembles the observed flow shown in figure 13(a). The 
number of cells observed in the final stage (N = 4; see figure 13d) is not exactly in 
accordance with the conjectural relationship ( l l ) ,  which predicts N = 3 for the 
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FIQURE 13. Sequence of streakline photographs showing the evolution of the relative flow during 
the spin-up in the circular geometry with a radial barrier, taken a t  (a) t = 0.01T, ( b )  0.5T, (c) 1.2T, 
and (d )  4.8T, with T = 8.3 s the rotation period. Exposure time: 1 s .  Experimental parameters: 
H = 12.5 cm, 52 = 0.755 rad/s. 

extreme case Di = 0. However, this departure is attributed to the fact that (11) was 
derived for a curved channel of a width that is smaller than the radius of curvature, 
which is not the case for the geometry considered here. 

3.3. The region enclosed by two non-concentric cylinders with a radial barrier 
In the discussion of the flow in the annular region with a radial barrier ($2) it  was 
mentioned that the size of the cells developing from the two-dimensional turbulent 
flow in the latter stages of the spin-up process was physically limited by the width 
of the channel. In the annular configuration the cells in the final flow stage are 
roughly equal in size, and their number N can to a good approximation be estimated 

7 FLM 206 
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FIGURE 14. Streamlines for the circular geometry with a radial barrier calculated according to the 
theoretical solution (9) with a = 0.01. The streamlines are plotted for Y = 0, -0.03, -0.06, ... , 
-0.27. 

FIGURE 15. Streakline photograph showing the cell pattern in the final stage of the spin-up in the 
region between two non-concentric cylinders connected by a radial barrier. The inner cylinder has 
been shifted off-axis, so that the channel width varies between 17.5 cm and 26.0 cm. Experimental 
parameters: H = 15.5 cm, Q = 1.00 rad/s, Do = 92.5 em, Di = 49.0 cm. 
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by geometrical arguments, see (11). This conjectural relationship was tested in a 
number of experiments, and the results presented in figure 6 indicate good 
agreement. 

The dependence of the cell size on the channel width is nicely illustrated by spin- 
up experiments performed with fluid enclosed by two non-concentric cylinders 
connected by a radial barrier. In these experiments the axis of the outer cylinder 
coincided with the rotation axis, while the inner cylinder was shifted some distance 
8 off the rotation axis. The cylinders are connected by a radial barrier a t  the position 
where the channel width has a maximum value. When the turntable starts rotating. 
a flow arises similar to the flow patterns observed in the annular configuration (figure 
2), and the two-dimensional turbulent flow resulting from the flow separation at  the 
inner cylinder is seen to become organized into a row of cells filling the channel 
completely. As in the annular geometry the ultimate size of the cells is determined 
by the channel width, but since the channel width in the present configuration varies 
along the channel, it can be expected that also the sizes of the eddies will be different 
along the channel. Figure 15 shows a typical streakline pattern photographed during 
the final stage of the spin-up process, and this pattern clearly demonstrates the 
dependence of the cell size on the local channel width : where the channel narrows the 
cell size decreases, and vice versa for a widening channel. 

4. Conclusions and discussion 
Laboratory experiments on the spin-up of a free-surface fluid in a variety of non- 

axisymmetric geometries have revealed some interesting phenomena not yet reported 
thus far, and the following conclusions can be formulated. 

( i )  The relative flow arising instantaneously after starting the turntable has 
uniform vorticity w = -252, and its streamlines Y = constant are given by 
V 2 Y  = 252 with Y = 0 a t  the lateral flow boundaries. For the geometries considered 
in this study, the experimentally observed streamline patterns in the initial stagc of 
the spin-up process show good agreement with the theory. The agreement with 
theoretical solutions is also confirmed by additional velocity measurements. 

(ii) An important feature characterizing the next stage of the spin-up process is 
the subsequent flow separation occurring a t  the lateral flow boundaries. This 
separation is caused by decreasing pressure gradients as well as by vorticity 
production in the viscous shear layers a t  the lateral boundaries. In many cases the 
separation gives rise to irregular three-dimensionally turbulent flow. Observations 
revealed that such flows become two-dimensional within a few rotation periods - an 
effect caused by the basic rotation. A common feature of two-dimensional flows is the 
so-called inverse energy cascade and organization of the flow into larger vortex cells 
has indeed been observed. This is in marked contrast to the flow arising during the 
spin-down from rigid-body rotation to rest : although initially the flow is governed by 
V'Y = -252 with Y = 0 at  the boundaries (leading to the same streamline patterns 
as for the spin-up, but with reversed flow directions), the flow separation results in 
a three-dimensionally turbulent flow which remains essentially three-dimensional 
during its decay (owing to the absence of rotation). As a consequence, no organization 
into cells is observed during the spin-down. For the spin-up case, the ultimate size 
of the cells in the 'organized' flow is limited by the lateral flow boundaries, and it can 
therefore be expected that their number N will depend on thc particular geometry. 
This conjecture has been confirmed by experiments with various flow geometries 
(different sizes and different shapes). 

1 2  
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(iii) Once the flow has become organized into a number of circular cells, the flow 
pattern shows no drastic changes. I n  this third stage of the spin-up process the 
relative flow in each cell decays very slowly as a result of the weak circulation driven 
by the Ekman layer a t  the bottom of the cell, in complete analogy with the spin-up 
or spin-down of fluid confined in a rotating circular cylinder. The experiments 
revealed that the observed spin-up time corresponds with the well-known Ekman 
timescale found for the spin-up of a free-surface fluid in an open cylinder. 

An important question not yet addressed concerns the effect of the free surface 
upon the flow during the subsequent stages of the spin-up process. It has been tacitly 
assumed that the free surface was in all cases approximately horizontal, so that 
‘topographic’ effects were absent. In  the laboratory experiments on the spin-up of 
a fluid in a rectangular tank as described by van Heijst, Davies and Davis (1989), 
however, it was found that the flexibility of the free surface can induce a translation 
of vortices, and this may thus affect the flow during the later stages of the spin-up. 
Van Heijst et al. have performed their experiments both for the case of a free-surface 
fluid and for the case in which the fluid was covered by a flat, rigid lid. As expected, 
the starting flow was identical in both cases. In  the case of a free surface, however, 
the cyclonic vortices formed during and after the flow separation from the tank walls 
showed a tendency to slowly drift towards the centre of the tank (which coincided 
in their experiments with the rotation axis). This behaviour is explained by the mass 
defect due to the free-surface depression associated with a cyclonic vortex, such that 
the centrifugal force acting on the fluid column containing the vortex is no longer 
balanced by the radial pressure gradient. I n  most of the configurations considered in 
the previous sections of the present paper such a radial translation has not been 
observed, simply because the geometry did not allow any large radial excursions. An 
exception is the semicircle geometry, where the cyclonic vortices arising in the 
corners of the domain during the flow separation stage (figure l o b )  are seen to grow 
and gradually shift to a position nearer to the rotation axis (figure lOc, d ) ,  until they 
finally merge into a single cyclonic cell (figure 10e) .  This behaviour of the cyclonic 
vortices would most likely have been different if the experiment was performed with 
a horizontal rigid lid on top of the fluid. 

In the experiments described in this paper the cylinder was in all cases mounted 
on the turntable such that its symmetry axis coincided with the axis of rotation. 
Under the assumption that any free-surface elevations or depressions are small 
compared with the total water depth, it is obvious that the starting flow is 
independent of the location of the rotation axis : the instantaneously arising relative 
flow is governed by the relative vorticity, which takes a uniform value of -252 over 
the flow domain, irrespective of the position of the rotation axis. On the other hand, 
the flow during the later stages of the free-surface spin-up will be affected by the 
positioning of the axis, because of the translation tendency of free-surface vortices 
mentioned before. When the fluid is covered with a horizontal rigid lid, however, this 
tendency is absent and the flow during the various stages of the spin-up would again 
be entirely independent of the axis position. 

The author is grateful to Frans Nieuwstadt and Dirk Visser for some illuminating 
discussions about the structure of the instantaneously arising flow in the initial stage 
of the spin-up and its theoqtical description, and to Piet Jonker for producing the 
streamline plots. 
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